How Celestial Objects Move - Note on Calculations

Ioana Zelko

October 7, 2015

```
N = North Pole
```

N = North Pole
Z = Zenith
Z = Zenith
S1 = position of star at first observation
S1 = position of star at first observation
S2 = position of star at second observation

```
S2 = position of star at second observation
```


North Cardinal Point

Figure 1

Our goal is to find the apparent rotation of the star around the North Pole during a period of time, given two measurements are taken at the same hour in two different days. We denote the angle of rotation by x , the measured altitudes by h_{1}, h_{2}, the measured azimuths by $A_{1}, A 2$, the declination by δ, and the latitude by ϕ. See figure 1

Since the declination is measured from the equator, the star will always be $90^{\circ}-\delta$ from the North Pole. The latitude is the angle between the zenith and the equator, so there will be $90^{\circ}-\phi$ between the zenith and the North Pole. All the circles in the drawing are "great circles" on the sphere: circles on the sphere that have their center at the center of the sphere. It is for triangles made of great circles that we can apply the spherical trigonometry formulas.

For our goal, there will be two methods from which we can derive our results, which are equivalent. It is useful to look at both because they have a different dependence on the measured quantities (the first method depends both on the azimuths and altitudes, while the second one depends only on the altitudes), so they will be affected differently by the measurement errors.

Figure 2

We will make use of a spherical trigonometry formula, called the cosine rule. Read more about spherical trigonometry on https://en.wikipedia.org/wiki/Spherical_trigonometry See figure 2. The cosine rule:

$$
\cos a=\cos b \cos c+\sin b \sin c \cos A
$$

North Cardinal Point

Figure 3

In the triangle $S_{1} Z S_{2}$ (see figure 3) we apply the cosine rule and obtain:

$$
\begin{gathered}
\cos \widehat{S_{1} S_{2}}=\cos \left(90^{\circ}-h_{1}\right) \cos \left(90^{\circ}-h_{2}\right)+\sin \left(90^{\circ}-h_{1}\right) \sin \left(90^{\circ}-h_{2}\right) \cos \widehat{S_{1} Z S_{2}} \\
\widehat{S_{1} Z S_{2}}=\alpha_{2}-\alpha_{1} \\
\cos \left(90^{\circ}-\alpha\right)=\sin \alpha \\
\sin \left(90^{\circ}-\alpha\right)=\cos \alpha \\
\cos \widehat{S_{1} S_{2}}=\sin h_{1} \sin h_{2}+\cos h_{1} \cos h_{2} \cos \left(\alpha_{2}-\alpha_{1}\right)
\end{gathered}
$$

Figure 4

Method 1

In the triangle $S_{1} N S_{2}$ (see figure 4) we apply the cosine rule and obtain:

$$
\begin{align*}
\cos \widehat{S_{1} S_{2}} & =\cos \left(90^{\circ}-\delta\right) \cos \left(90^{\circ}-\delta\right)+\sin \left(90^{\circ}-\delta\right) \sin \left(90^{\circ}-\delta\right) \cos \widehat{x} \\
& =\sin \delta \sin \delta+\cos \delta \cos \delta \cos \widehat{x} \\
\cos \widehat{x} & =\frac{\cos \widehat{S_{1} S_{2}}-(\sin \delta)^{2}}{(\cos \delta)^{2}} \tag{1}\\
& =\frac{\sin h_{1} \sin h_{2}+\cos h_{1} \cos h_{2} \cos \left(\alpha_{2}-\alpha_{1}\right)-(\sin \delta)^{2}}{(\cos \delta)^{2}} \\
\widehat{x} & =\arccos \left(\frac{\sin h_{1} \sin h_{2}+\cos h_{1} \cos h_{2} \cos \left(\alpha_{2}-\alpha_{1}\right)-(\sin \delta)^{2}}{(\cos \delta)^{2}}\right)
\end{align*}
$$

North Cardinal Point

Figure 5

Method 2

In the triangle $S_{1} N Z$ (see figure 5) we apply the cosine theorem and we obtain:

$$
\begin{align*}
\cos \left(90^{\circ}-h_{1}\right) & =\cos \left(90^{\circ}-\delta\right) \cos \left(90^{\circ}-\phi\right)+\sin \left(90^{\circ}-\delta\right) \sin \left(90^{\circ}-\phi\right) \cos \widehat{S_{1} N Z} \\
\sin h_{1} & =\sin \delta \sin \phi+\cos \delta \cos \phi \cos \widehat{S_{1} N Z} \\
\cos \widehat{S_{1} N Z} & =\frac{\sin h_{1}-\sin \delta \sin \phi}{\cos \delta \cos \phi} \tag{2}\\
\widehat{S_{1} N Z} & =\arccos \left(\frac{\sin h_{1}-\sin \delta \sin \phi}{\cos \delta \cos \phi}\right)
\end{align*}
$$

North Cardinal Point

Figure 6

In the triangle $S_{2} N Z$ (see figure 6) we apply the cosine theorem and we obtain:

$$
\begin{align*}
\cos \left(90^{\circ}-h_{2}\right) & =\cos \left(90^{\circ}-\delta\right) \cos \left(90^{\circ}-\phi\right)+\sin \left(90^{\circ}-\delta\right) \sin \left(90^{\circ}-\phi\right) \cos \widehat{S_{2} N Z} \\
\sin h_{2} & =\sin \delta \sin \phi+\cos \delta \cos \phi \cos \widehat{S_{2} N Z} \\
\cos \widehat{S_{2} N Z} & =\frac{\sin h_{2}-\sin \delta \sin \phi}{\cos \delta \cos \phi} \tag{3}\\
\widehat{S_{2} N Z} & =\arccos \left(\frac{\sin h_{2}-\sin \delta \sin \phi}{\cos \delta \cos \phi}\right) \\
\widehat{x} & =\widehat{S_{2} N Z}-\widehat{S_{1} N Z} \\
& =\arccos \left(\frac{\sin h_{2}-\sin \delta \sin \phi}{\cos \delta \cos \phi}\right)-\arccos \left(\frac{\sin h_{1}-\sin \delta \sin \phi}{\cos \delta \cos \phi}\right) \tag{4}
\end{align*}
$$

